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A COMPARISON OF TWO MELTING-PRESSURE EQUATIONS
CONSTRAINED TO THE TRIPLE POINT USING DATA FOR ELEVEN
GASES AND THREE METAILS

Robert D. Goodwin and Lloyd A. Weber

/U}(// s

Parameters have been determined by a least-squares
method for the reduced Simon equation and for a new,
empirical melting equation using data for HZ’ DZ’ TZ’ Ne,
Ar, Kr, Xe, N,, O, CO,, HZO’ Na, K, and Hg. The new

2
equation, (P-Pf)/(’IZ-Tt) = Aexp(-a/T) +BT, represents
experimental data with essentially the same accuracy as

the Simon equation. It provides a sensitive difference
method for graphical examination of data.
BTep Horeok

1. Introduction

Experimental data for melting curves often have been represen-
ted by the original Simon equation [ Simon and Glatzel, 1929; Simon,

Ruhemann, and Edwards, 1930],
c
P = a+bT (1-a)

with three parameters, omitting the triple-point datum. Since a
number of triple-point determinations now are available, it is
appropriate to establish the two parameters of the reduced Simon

equation [ Simon, 1937; 1953],

C
P-P, = P [(T/Tt) - 1] (1)



as constrained to the triple point (subscript t), using a uniform com-
putational method based on relative, rather than absolute deviations
for all substances.

Whereas (1) has been derived with certain assumptions from
modern theory of solids [ Gilvarry, 1956; Glass, 1963; Salter, 1954;
Voronel, 1948, 1959], real or apparent difficulties are encountered
in the accurate empirical representation of some data, e.g. [ Michels
and Prins, 1962; Pistorius, Pistorius, Blakey, and Admiraal, 1963],

and for some metals the theoretically derived relation

c = (6y +1)/(6y - 2)

(v = Grueisen's constant) is not confirmed experimentally [ Strong and
Bundy, 1959].

In view of these difficulties, we have at the same time examined
further the empirical equation recently used for interpolation near the

triple point of hydrogen [ Goodwin, 1962; Goodwin and Roder, 1963],

y = Aexp(-a/T) + BT, (2)
where

y =(P - Pt)/(T - Tt).

For this examination, substances other than low-boiling gases are
included for which, however, the triple-points may not be accurately
known. It is possible to deduce that (2) implies a temperature-
dependence of the Grueisen constants, not found in the assumptions

of the latter equation of state. Gilvarry, however, has concluded that
a small temperature-dependence of these constants may be expected

[ Gilvarry, 1956]. Figure 1 illustrates behavior of the experimental

function y with data for H_, DZ’ NZ’ Ar, and COZ. The small

2
temperature-dependence of this function (as compared with the pressure



P) provides a direct method for graphical examination of the relative
deviations or precision of a set of data, prior to the tedious iterative
determination of parameters either for (1) or (2).
Concerning helium, for which no triple-point exists, we merely
note, for example, that for-(a/T) << 0 at very low temperatures, (2)
may be reduced to
2
P= Pt - (BTt) e T + BT (2-a)
and that this form is the same as used by Mills, Grilly and Sydoriak
3
(1961) near the melting pressure minimum for He™ in the range

0.3 <TX< 0. 5°K, namely,
P= 32.42 - 21.25T + 32.20 TZ.

Equation (1), on the other hand, clearly is monotonic.

2. Data and Computational Method

For each substance, the self-consistent data of but one investi-
gator have been selected for present purposes. Original, unpublished
data on hydrogen, deuterium, tritium, neon, nitrogen, and oxygen
were generously given to us by Edward R. Grilly[ Mills and Grilly,
1955; Mills and Grilly, 1956]. Argon, on the other hand, has been
selected for illustration using data of three investigators over a wide
range of pressures [ Bridgman, 1935; Lahr, and Eversole, 1962; and
Michels and Prins, 1962]. Further references to experimental data
are given by authors cited here. Triple-point constants used for the
Present computations are given in table 1. All pressures are in
atmospheres [ Hilsenrath, 1955]. Absolute temperatures below 80°K
are on the NBS 1955 low-temperature scale [ Goodwin and Roder, 1963].



Since relative, rather than absolute, error is roughly constant
in the experimental determination of melting pressures, the least-
squares method (with trial variation of one parameter) has been

applied to constant or nearly constant forms of the above equations,

(P-P,)/ [(T/Tt)c - 1] = P, (1-D)

o

1,¢/T | g (2-b)

(P-Pt)/(T-Tt) T = AT
In (2-b), all three constants have been treated as adjustable para-
meters, in contrast to the earlier treatment for hydrogen isotopes
[ Goodwin, 1962].
Computational results include the root mean square (r.m.s.)
absolute deviation in atm, and the r.m.s. relative deviation in per-

cent, defined respectively by

— q1/2
D = [; Z (AP)Z/n:' s (3-a)
— 1/2
A = [Z 8Z/n:| s (3-b)
where
5 = 100(P_ - P)/P (3-¢)

for a number n of datum points, and where A P is the difference
between calculated and experimentai values. The form of (3-a) is the
same as used by Mills and Grilly [ 1956]. Minima in D and A,
however, generally do not occur for the same set of parameters.
Those corresponding to the minimum relative deviation, A, are
given in the following results, in contrast to those for a minimum

in D given by Mills and Grilly [1956]. To examine detailed behavior




near the triple point, the average of absolute values of deviations from
the first six data of each investigator at the lowest pressures are given

in percent in table 2 under the symbol § .

3. Results

Table 2 presents the sources of data and the number of points,

'n, used in the least-squares determination of parameters, and the
maximum pressure of these data. There follow the parameters and
deviations for each equation. For hydrogen on lines 1 and 2, two
different sets of data are compared. Argon is examined with various
data. Line 6 is for the mutually consistent data of Michels and Prins
[1962] and of Bridgman [ 1935]. On line 7 (2) has been fitted to
synthetic data computed by (1), line 6. Line 8 includes, also, the
data of Lahr and Eversole to 18, 000 atm [ Lahr and Eversole, 1962],
whereas line 9 employs the latter data only.

A comparison of relative deviations, A, in table 2 shows in
general that (2) represents the data as well as, or, for some sub-
stances, somewhat better than (1). The improvement is clear for the
hydrogen data on line 1, for argon on line 6, for xenon, and for water.

Equation (2) contains a term which may be compared with the
internal pressure, Po’ of (1) at T = Tt' The ratio of these terms
for the gases through 02 in table 2 is found to be

(ATt/Po) exp (-a/Tt) = 1.2+£0.1

with the exception of xenon for which the ratio is 1. 70.
For xenon, in table 3, the comparison of equations is given at
all points, since Michels and Prins found it necessary to fit the data

by (1-a), independently, in two regions [ Michels and Prins, 1962].



Whereas (2) gives a better average representation than (1), it does
not overcome the systematic deviation seen in this table.

Some of the results for argon are presented graphically. The
ordinate of the figure 2 logarithmic plot was computed with the inter-
nal pressure of Michels and Prins for (1-a), while the slope of the
extrapolated straight line corresponds to their values of ¢ [ Michels
and Prins, 1962]. Included for comparison are data of Bridgman
[1935], of Lahr and Eversole [ 1962], and of Robinson [1954]. As
compared to the pressure at 360°K (near 18, 000 atm.), given by (1),
line 6 of table 2, the smoothed function of L.ahr and Eversole yields a
value 7. 0% lower, and (2), line 6 of table 2, yields a value 3. 5%
higher, the latter equation being shown by the dashed curve of figure
1.

Figure 3 for argon is derived from (2), using parameters from
line 6 of table 2. The straight line represents (2). The dashed line
represents (1). Datum points are the same as on figure 2. Figure
4 is similar, except that all constants are from line 8 of table 2.
This type of difference plot provides a highly sensitive method for
graphical examination of the precision of experimental data.

Table 4 for argon presents relative deviations of both equations
from the data of Bridgman [ 1935]; Lahr and Eversole [1962]; and
Michels and Prins [1962], line 8 of table 2 to 18, 000 atmospheres.
It is seen that the two equations give comparable representations of
these combined data to 18, 000 atm.

Table 5 for argon compares first derivatives, s = dP/dT, of
the two equations in terms of percent difference, 100(s2 - sl)/s1 , in
which subscripts refer to the equations. Under heading (a) are given
results for the consistent data of line 6 of table 2, whereas, under (b),

the results correspond to the apparently less consistent data of line 8




of table 2. For each case, it is seen that the first derivatives of the
two equations are comparable over the range of the data.

Table 6 presents a comparison of the Simon constants recently
determined by S. E. Babb, Jr. [1963] ,» by a method of absolute
deviations, with those determined in the present report by a method
of relative deviations.

Since importance has been attached to the fact that (1) is a
"reduced' form [Simon, 1937], the reduced constants for (2) are
examined in table 7. The following ranges of values are found for

the gases H2 through N2 of table 2,

o/T, AT P, BT /P,
0.04 —~0.4 (3—17)- 10° (0.1 ~1.3) . 10°

4. Summary and Conclusions

The two parameters of the reduced Simon equation have been
determined for a number of gases and some metals by a uniform
method which assumes that relative rather than absolute uncertainties
are roughly constant in the experimental pressures.

Some current empirical and theoretical difficulties with the
Simon equation, already mentioned, have led to examination of a new,
empirical equation with three parameters., The latter equation is
presented as a result of the remarkable equivalence to the Simon
equation found here in the empirical representation of data, even

though no simple mathematical equivalence between the equations is

apparent.



It may be concluded that (1) will be preferred to (2) for its
simplicity and qualitative theoretical support, except where the latter
gives improved empirical representation of data, or until such time
as it receives some theoretical interpretation. Egquation (2), however,
provides a sensitive difference method for graphical examination of

the precision of data.
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Substance
n -H2

N DZ

Hg

Table 1. Triple-point constants used.

Tt’ °K Pt’ atm.
13.947 0.071
18.72 0.169
20. 61 0.213
24. 544 0.427
83.812 0. 685
115,745 0.724
161.364 0.806
63.146 0.124
54. 353 0. 0015
216.577 5.11
354, 75% 21, 260, *
370.757% 0.9684F
335.65¢F 0.9684 %
234.32¢ 0.0

* Triple-point ice VI + ice VII + liquid.

T The melting-point of original data.
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Table 3.

T

161. 554
162,439
163,375
164.171
167.154

171,455
176.978
184. 004
191,144
197.868

203,000
207, 205
211.142
215, 264

Comparison of (1) and (2) for Xenon

P

——

5.53
27. 49
50, 82
70.95

147, 31

259, 23
405, 89
596. 25
794, 08
984, 49

1132, 20
1255,18
1371, 51
1494, 53
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0.33
0. 66
0.67
0. 37
-0.23

-0. 51
-0.64
-0. 56
-0. 39
-0.22

0. 06
0. 05
0.17
0. 30
0

. 37

. 00
. 39
.45
.19
. 28

.42
.42
. 26
. 09
.02

. 09
.10
.11
.11
.21
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Table 5.

83.
83.
84.
84.
85.

86
87
88
90
100

110
120
140
160
180

200
240
280
320
360

Comparisons of s = dP/dT for Argon

812
900
000
500
000

100 (sZ - sl)/sl
(a) (b)
+. 06 -2.02
+. 07 -2.00
+. 07 -1.97
+. 06 -1.83
+. 06 -1.70
+. 06 -1.44
+. 06 -1.21
+. 05 - .98
+. 04 - .58
-.06 + .80
-.15 +1.42
-.21 +1. 61
-.13 +1. 34
+.18 +0. 74
+. 69 +0.10
+1.35 =0.47
----- -1.30
----- -1.71
----- -1.76
----- -1.54

(a) Constants from line 6 of table 2.

(b) Constants from line 8 of table 2.
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Table 6. Comparison of Simon Constants

of S. E. Babb, Jr. [1963] with those of table 2.

Substance (Po) Babb/(Po)table 2 (C)Babb/(C)table 2
n'HZ 1.1051 0.9716
n-D, 1.0443 0.9847
n-T, 1.0258 0.9911
Ne 1. 0395 0.9815
Av 0.9992 0.9994
Kr 0.9983 1.0012
Xe 1. 0951 0.9294
N, 0.9996 1.0006
o, 1.0114 0.9929
Co,* 1.2421 0.8387
H, 0% 2.1180 0. 6479
Na 1. 0355 0.9814
K 0.9975 1.0091
Hg* 0. 6366 1. 5487

* Different data used by respective authors.
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Table 7. Approximate reduced constants for equation (2)

Line* Substance o/ T, (ATt/Pt) 1073 (BT,/P) - 1072
1 H, 0. 445 6. 45 1.194
2 H, 0.294 5. 66 1.325
3 D, 0. 235 3. 66 0.752
4 T, 0. 049 2.99 0.704
5 Ne 0.163 3. 41 0. 344
6 Ar 0. 086 4. 07 0.134
7 Ar 0.107 4.20 0.130
8 Ar 0.286 5.56 0.076
9 Ar 0.573 6.89 0. 052

10 Kr 0. 043 3.89 0.120
11 Xe 0. 440 7.72 0

12 N, 0.111 16.87 1.227
13 o, 0.258 3021. 140.

14 co, 0 -0.30 0.103
15 H,O 1.27 -0. 09 . 0008
16 Na 1.03 -586. 6. 84
17 K 0. 83 ~175. 2.83

% Lines correspond to table
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Figure 2. Logarithmic plot of equation (1) for argon

using the value Po = 2087 atm.
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